
DxWnd rel. 2.02.82 unfinished Manual

What is DxWnd?
DxWnd is a Win32 hooker that intercepts and alter the behaviour of
window messages and APIs by means of event interception and code
injection directed to the configured tasks in order to get a
proper behaviour of fullscreen programs, but in a windowed
environment..... too complicated? Well, actually DxWnd is a tool
that does its best to let you run fullscreen applications in a
window.

Is that all? Well, no, not really..... Taking advantage of the
hooked logic injected in the application, DxWnd does some more
little tricks, that fall in two general cathegories: making your
program more compatible to different environments and altering its
time flow. So, that makes some old programs able to run on modern
platforms (well, at least sometimes...) and to increase or
decrease the game speed at your will. Have you always been a
complete nerd with FPS? Here comes your revenge: bullet time
wherever you need it!

Why DxWnd?
This is not a silly question. Actually, you may think to two
different questions:

1) Why should I use DxWnd?

2) Why someone should spend his time to develop it?

Why should I use DxWnd?

Let's start with the first one. Once upon a time (in the IT clock,
that means a few years ago) people used to have clumsy PCs that in
a slow and single-threaded environment tried to do their best to
impress their owner with strength demonstrations, usually trying
to move colored pixels on the screen in the fastest possible way.
That custom was named videogaming, and implied using all tricky
ways to improve the system performances. One common way to do
that, was to highjack all hardware resources and dedicate them for
this single purpose, of course disabling any attempt to run
parallel tasks in other portions of the screen: the classic
example being any videogame developed for Win95 and further.

Now, you guys may ask yourselves why should all this time be
passed away and PC increased their power by a 100x times more, to
keep playing the very same game in the very same environment.
Someone is calling you on a chat? A new email message is arrived?
You want to browse the net meanwhile? Something is happening on
your favourite social network or MMPORPG? Forget about it! You're
currently dealing with a task that wants 100% of your attention,
even if it uses 1% of your PC power. So, why not attempting to
push this old and invasive application within a window of its
own ?

That's what DxWnd is mainly for: let fullscreen applications run
pretending they're still in a fullscreen context, but actually
within their own separate window. And, taking advantage of the
code hooking needed to do so, in some case it may even happen that
things are further improved, but we'll see this later.

A second undoubtful fact is the technological evolution that has
turned games from different windows operating systems (through
Windows 95 to current Windows 8), CPU architectures (16, 32, 64
bits) and from old and tricky directdraw support to recent 3D
libraries like direct3d 8/9/10/11, and OpenGL. This evolution has
left some victims behind: a lot of wonderful games are no longer
supported in the current environment, even despite the efforts
Microsoft is making to support legacy. In some cases, DxWnd is
crucial to recover these old glories of the past.

Why someone should spend his time to develop it?

Now the second question: why someone should ever bother to develop
a thing like this? This is different story. I started looking for
a window-izer for a specific purpose: not having a dual monitor PC
at home, I was looking for a way to debug fullscreen videogames.

Looking in the net resources, I got references to an asian
(japanese?) DxWnd project that seemed discontinued, but left an
old copy of the C++ sources (unfortunately, not the most recent
release) to be downloaded. After that, there were several attempts
to translate and improve the program, but none shared the sources
again. When I opened the project trying to understand the basic
principle, I found that it was incredibly simple and yet
sophisticated, acting I think in a very close way as virus or
anti-virus programs do.

So I just thought it was such a pity that this incredible piece of
artwork of C++ programming could be left discontinued, and then I
decided to “adopt” the project and continue it, even if in the
meanwhile I bought a second monitor for my domestic PC. And for
the same reason, I published the source code on sourceforge, a
proper location for any open source piece of coding, and I
encourage anyone to join the project and extend it further on. And
let me thank again the mysterious coder whose only trail left to
make a reference is SFB7: whoever you are, SFB7 (if this was your
nick), thank you.

From the time I published the first DxWnd releases, then, a lot of
improvements have been made, most of them involving sophisticated
techniques that I learnt from several great teachers, coming from
SourceForge, CodeProject and anywhere else in the net. Thank you
all, open source supporters!

How does DxWnd work?
Well, actually there are several different ways you may write a
fullscreen application, and that's why there are corresponding
different ways to handle it hence some annoying configuration to
do before.

Please, bear in mind that DxWnd is still an experimental program,
and then its configuration is still a little clumsy. This aspect
will be improved and simplified at proper time, later on.

Anyway, these are the basic principles of the DxWnd behaviour:

1. DxWnd DOES NOT alterate in any way the behaviour of your
software (either system or applications) when not active.
When turned off, everything behaves as if DxWnd never run on
your machine, or never existed at all.

2. DxWnd DOES alterate the behaviour of your application
software when running: it hooks custom code that changes the
applications' behaviour, hopefully in a positive way, but you
never know. It's possible that because of hacks to the
directdraw or other system code there might be annoying
effects such as frozen screen, unresponsive keyboard and so
on. Be patient and maybe you'll find a good game setting to
play without side effects.

3. This is tricky: unless you need code injection support (this
will be explained later) when running, DxWnd affects ALL
games in the shown list, no matter whether the cursor is
highlighting a particular one, or if you started your game
outside the DxWnd interface. That's why you need not activate
the game from the DxWnd menu, but you could keep managing it
as usual (clicking on desktop icons, shortcuts or
whatsoever). So, remember this: whenever DxWnd is running, it
impacts on ANY game it is configured on its game list, no
matter if you didn't strt it from DxWnd interface.

4. Again, DxWnd is currently coded to make ONE SINGLE game
working at a time, even if it could be possible to start and
intercept more than one in parallel. In some cases, the games
work together, but unpredictable things happen for instance
when you try to control more than one game at a time. Maybe
one day it will make it possible to play more games in
parallel, but so far that feature is unsupported, so DxWnd is
operating on one game (the fist started up) while the others
will not be effected and should start normally in their
original fullscreen mode.

DxWnd stores ALL its settings on a couple of configuration files
(dxwnd.ini for almost everything, and dxwnd.reg for altered
registry keys configuration) in the very same folder where
dxwnd.exe and the hooker dxwnd.dll are located. No info is written
in the registry or anywhere else in the system. No installation
procedure is required, just copy the files where you like better,

create your own shortcut entries wherever you like and, whenever
you're satisfied with some DxWnd setting, just back-up the
configuration by simply copying the dxwnd.ini file somewhere else.
Also, keep in mind that ALL changes are written on disk just when
DxWnd exits safely, so whenever it crashes your configuration
changes are certain to be lost.

From release 2.02.22, then, it's also possible to export and
import single pieces of configuration to separate files, so that
people are encouraged to share working game configurations by
sharing these files only.

The command line arguments
DxWnd accepts a few command line arguments, that can all be
combined together to alter his behaviour:

/T Starts DxWnd iconized in the System
Tray (see DxWnd in the System Tray)

/I Starts DxWnd initially in the IDLE
state, so that it doesn't effect the
programs until you manually issue a
Hook ► Start command

/C:<filename> Uses the <filename> configuration file
instead of the default config.ini file.
In any case, the configuration file
must be located in the same DxWnd
execution folder.

/lang=<xx> If you need a localized version of
DxWnd, this argument causes DxWnd to
load all resources text from the
external dlls, Resources_<xx>.dll

/debug Enables debug features. Not
recommended!

The Application GUI
DxWnd comes with a nice and simple Graphic User Interface: when
started, it shows a form pretty muck like the one in the following
picture:

In the main window there is the list of hooked programs: DxWnd can
currently handle up to 256. Trying to add more than that will give
an error message. Keep in mind that DxWnd bundles contain a export
subfolder where all supported games have their own default
configuration ready to be imported, but because of the program
absolute path value, these entries will actually work only after
updating the path with the proper local value.

As shown in the picture, each configuration line includes an icon
which color tells the general status of the program, as follows:

blank icon: the configuration refers to a not
existent program's path, so that the entry
won't work unless the path is corrected.

grey icon: the hook is not enabled: this
program can be activated by the DxWnd menu,
but won't be windowed.

green icon: the hook is enabled and the
program will be windowed when run either from
the DxWnd interface or however else.

red icon: the program requires code
injection, then it will need to be activated
from the DxWnd interface only.

You can activate command either via the top menu, or by right
clicking on a row in the application list. These are the
commands:

DxWnd is also able to operate iconized in the System Tray, from where it shows
its state (either IDLE, READY or RUNNING) and run a few useful commands.

DxWnd detects the video settings when is started, and compares it to the current
value after killing a task or terminating itself: in case it finds differences,
it prompts you asking whether you want the previous screen setting to be
restored. This is quite useful to handle all the games that terminates without
restoring the previous setting, as it may happen when they die abnormally.

File → Save Saves the current configuration to disk.

File → Sort program list Arranges the program list in ascending alphabetical
order (sort).

File → Import ... Imports one program configuration from an
external .dxw exported file

File → Clear all logs Turns all tracing options off for all games in the
list and deletes any dxwnd.log file.

File → Hook → Start / Stop Hook Stop is a handy way to prevent DxWnd to do
its job, pretty much the same to stop the program,
but leaving it running (in the IDLE state). Hook
Start restores the default behaviour (the READY
state, or RUNNING when operating on a task).

File → Process → Pause Tries to pause the program by lowering each thread
priority to the minimum.

File → Process → Resume Restore threads priorities.

File → Process → Kill Kills the last process activated by the DxWnd
interface. Very useful to get rid of games gone
crazy because of DxWnd that refuse to terminate
themselves.

File → Desktop color
depth → 8 / 16 / 24 / 32
BPP

On recent platforms, low color depths are no longer
supported for the desktop, though still working.
This menu let you ask the system to set the current
color depth to 8, 16, 24 or 32 bits per pixel. Of
course, it is possible that some color / resolution
compinations are not supported.

File → Move to Tray Move DxWnd in the System Tray, where a dedicated
icon will show its state and allow a few commands,
including the possibility to show the application
window again.
Note that once DxWnd goes in the System Tray, it
always stays there also when it is made visible
again.

File → eXit Exits DxWnd. Beware that if a game was activated
while DxWnd was active, it will very likely crash

after the DxWnd termination, so a check is made and
you'd be prompted to confirm the operation.

Edit → Run Starts the currently selected application

Edit → Modify Opens the configuration panel to set/change the
selected program settings

Edit → Delete Deletes the selected application entry (asking a
Yes/No confirmation)

Edit → Add Inserts a new application entry in the list. The
configuration panel is opened to let you define the
initial settings.

Edit → Explore Opens Microsoft Explorer to the folder where the
application is located. This is a shortcut to
something usually useful.

Edit → Log → View Opens the dxwnd.log logfile of the selected
application, if existing. Beware that in order to
do so, you should “associate” the log file
extension to your preferred text editor before.

Edit → Log → Delete Deletes the logfile of the selected application, if
existing.

Help → About Shows the program version and references the
development team and project supporters: currently
SFB7 whoever he/she might be, GHO (that is myself),
Olly for having developed both OllyDBG and the
disassembly library I'm using and Aqrit for so many
hints, informations and pieces of code.

View → Status This command shows a status window with
informations about DxWnd and the hooked program.

View → Time Slider Shows a time slider window that can be used to
know and dynamically alter the time flow speed

When right-clicking on the program's list, instead, the following
menu will be shown:

Run Activates (run) the selected task. Same as double-
clicking on the list entry.

Modify Shows and let you change the program's
configuration.

Delete Deletes (after a confirmation command) the selected

entry.

Add Prompts for all data needed to dfine a new task in
the list.

Explore Open a window explore session pointing to the
program's configurated install path.

Log → View Same as Edit → Log → View

Log → Delete Same as Edit → Log → Delete

Export ... Exports the highlighted program configuration to a
file

Kill Kills the corresponding program. Differently from
the File -> Process -> Kill command, this command
would not kill the currently active program, but
the selected one, no matter whether it was managed
by dxWnd or not. This is the reason why sometimes
the first Kill command may fail and this one is in
general more reliable, at the cost of selecting the
proper entry.

DxWnd in the System Tray
Once you move DxWnd in the system tray and until the program is
terminated, an icon will be visible in the system tray. Right-
clicking on the icon, you get a subset of the DxWnd commands, plus
the Show command that shows the DxWnd window again. The Show
command is the menu default, so you can activate it also by
double-clicking on the DxWnd tray icon.

READY state: DxWnd is ready to hook a program

IDLE state: DxWnd is running, but will not affect any program

RUNNING state: DxWnd is currently operating on a program

The configuration panel
Through the Add or Modify command, this tabbed panel will be
shown:

Each panel defines the configuration for any given program's
characteristics.

the Main tab:

Name: The user defined program name, to allow you to label your application
with an evocative naming, possibly including qualifiers, versioning
etc.
If unset, DxWnd will insert here the task filename.

Path: The pathname of the task to be activated / hooked.

Launch: In some cases, the program to be hooked can't be run by launching
itself directly, but needs arguments or other envoronment elements
provided by some frontend father program. To simplify the program
activation, the frontend pathname can be written here: when set, the
run command does not run the path in the field above, but this one.

Module: In some occasional cases, some dlls may get unnoticed to the DxWnd
hooking logic. In these fortunately rare cases, you have a chance to
make the program working by referencing here one or more modile names
to be added at the DxWnd search algorythm.

Hook enabled If this flag is not set, DxWnd ignores the task - see gray icon

Do not notify on task
switch

Inhibits the task switch notification message that may hurt some games
not designed to handle it properly

No banner Well, DxWnd celebrates itself a little by showing a very short splash
screen at the beginning. If you're not happy with this, checking this
flag will disable the show.

Run in window Checked by default, tells DxWnd to try to run the program in windowized
mode, that is the essential reason why DxWnd exists. But if not checked
DxWnd still performs all other functions not related to the screen
size, such as time stretching, compatibility options and so forth.

Hook all DLLs The original DxWnd behaviour was limited to search & hook calls made by
the main program directly. Checking this flag cause DxWnd to recurse in
all non-system DLLs address space to hook calls there. It's necessary
in all cases where the graphic engine is not directly coded in the
program, but it's implemented in a separated engine DLL.

Hook OpenGL Enables OpenGL API hooking

Remap Client Rect Enabled by default, makes DxWnd remap the window client coordinates so
that the program receives the same values as if the program was running
in fullscreen mode.

Hot patch (obfuscated IAT) The original DxWnd used IAT patching to redirect API calls to the
altered routines. This method has its advantages, but fails when not
all API are reached because they are located in unconnected dlls,
referenced by ordinal number or referenced by programs with obfuscated
IAT. IAT obfuscation is a sophisticated but common enough technique to
make hacker's life harder: for instance, the game executable of Doom
III has an obfuscated IAT.
Checking this flag cause DxWnd to use an alternate patching technique,
that is the "hot patching" that creates a detour assembly code right at

the beginning of the API implementation. Once done EVERY SINGLE CALL
gets intercepted no matter from where the call is made, but it isn't
always possible to apply this technique.
Luckily, in the vast majority of cases, they both work.

Use DLL injection The basic hook thecnique intercepts the first window creation event. At
that time, the program may have done unwanted actions already, such as
changing video mode or detecting bad conditions or crashing. Checking
this flag cause the DxWnd logic to be "injected" right at the beginning
of the task execution, making DxWnd able to intercepts all events. The
drawback is that this only works when the task is activated from the
DxWnd interface – see red icon.
Another drawback is that the injection process resembles pretty much of
an activation from a debugger, increasing the chances for game
protections to intercept this situation and stop the program.

Hook child WindowProc By default, DxWnd intercepts the WindowProc routine of the main window,
and this is enough for its purposes. In some cases, though, this is not
enough and this flag tells DxWnd to intercept and redirect the
WindowProc routines of all child windows as well.

Optimize CPU (DirectX 1-7) Optimizes the CPU load, but only for ddraw operations (DirectX1 to
DirectX7)

Keep aspect ratio When the window is resized, the aspect ratio set by the window initial
size is preserved (by default the 4:3 aspect ratio such as 800x600).

Window initial position &
size

Four values for the initial X, Y coordinates of the upperleft window
corner and the window width and height. All values are referred to the
window client area rather than the outside border. The values are used
depending on the Position selection

Position A selection of 4 possible cases:
• X, Y coordinates: the window is placed at the chosen

coordinates
• Desktop center: the window is centered on the screen, and only

the width and height fields are used.
• Desktop work area: the window occupies the whole screen but the

bottom taskbar.
• Desktop: the window occupies the whole screen, as if it was

fullscreen (a.k.a. Fake-fullscreen mode)

the Video tab:

Fix Window Frame Style Initializes the game window with a title bar and resizeable borders.

Prevent Win Maximize Some modern games don't actually go in fullscreen mode, but just make
the window occupy the whole screen. The option intercepts Windows
messages and user32 calls to avoid changing the window position and
size to make it a full-screen window.

Lock win coordinates Intercepts messages and calls that the program makes to himself to
chenge its own window coordinates. In this way, though, the game
window becomes fixed in position and size.

Lock win style Intercepts messages and calls that the program makes to himself to
chenge its own windowstyle.

Recover screen mode Sets the screen mode to registry default settings. In general, DxWnd
intercepts any attempt to change display settings and prevents
unwanted operations, but still some programs have display settings
instructions before DxWnd could possibly intercept them (e.g. before
the window is created and the windows hook is invoked), so that
chaanging the display settings right after is the only possible
solution. Try this when other options don't work.

Refresh on win resize Any decently written windows application should take care of
refreshing the screen primary surface when resized, and most
fullscreen games do it. Some don't (they were not suppoed to ever be
resized, actually). This flag is to force a refresh (useful for
“Uprising”).

Fix Parent Window Typically, a game is started with an invisible program window, and
then created a separate and child window for handling the graphic.
Some games don't use the child window, but they rather use the parent
one. In this case, the parent window becomes visible, then needs to be
properly resized. It's experimental, for now, but seems to be able to
manage successfully several tough games: Solaris, SleepWalker, Sid
Meier's Sim Golf, the Worms serie....

Modal Style When "Fix Window Frame Style" is set, a borderless and titleless modal
style is chosen instead of the default one.

Force win resize Experimental (and not working very well so far): should force the
processing of window resizing messages so that the window can be
resized by dragging borders.

Hide multi-monitor config Makes the program ignore that there are multiple monitors in your
system configuration, giving informations about the primary monitor
only.

Wallpaper mode Experimental – forces the program Z-order to the lowest level so that
it runs below any other task, like an active wallpaper.

Fix window frame in D3D Tries to avoid D3D to render on the whole window surface including the

window border. It activates a small trick that cause the program to
render to a child modal surface within the main window borders.

Don't move D£D rendering
window

Suppress child process
creation

Suppressing the birth of child processes is necessary whenever the
task is running child processes as video players, splash screens or
similar things. In this case, hooking more than one process may be
difficult and not worth the result.

Hide desktop background Starts the windowized program together with four black borderless
windows that surround it entirely giving a better feeling of
concentration. The whole idea was borrowed from "Mr. Hide":
https://sourceforge.net/projects/mrhyde/

Simulate 8BPP desktop Some games pretends you switch the video mode to 8BPP before you
activate them, making it useless the 8BPP emulated mode. This flag
just let the program believe that the desktop setting is in 8BPP mode
already.

Simulate 16BPP desktop Same as above, but declaring a 16BPP setting. These two flags should
not be set together.

Forces 16BPP desktop In some cases, the game really needs a 16BPP desktop, but does not
contain the code for activate this color depth, and on modern
platforms, though supported, it is very difficult (Win7) when not
impossible (Win8) to do it manually. This flag switched the desktop to
16BPP before the game would complain.

Simulate BW monitor Activate a tweak in the palette handling that causes all colors to be
replaced with the corresponding grayscale color. It works only on 8BPP
palettized games or emulating 16BPP on a 32BPP desktop.

Set 16BPP RGB565 encoding By default, DxWnd emulates 16BPP color with RGB555 encoding. The
option forces RGB565. Thi option, of course, impacts the video only in
emulation mode and for 16BPP color depth.

Lock Sys Colors

Disable setting gamma ramp Disables API trying to alterate the default gamma ramp making the
screen lighter or darker. Since there API affect the whole screen,
this flag is mainly useful to avoid the background desktop to be
affected.

Screen resolution Affects the resolutions detected by the application. There is a choice
of the following values:

• SVGA modes: the classic 4:3 screen resolutions starting from
320x200 up to 1280x800

• HDMI modes: the typical 16:9 resolutions from 640x360 up to
1980x1080

• Monitor native modes: whatever returned from the video card
Notice that 320x200 resolution is typically no longer supported, but
it is not a problem to emulate it in window and this resolution is
necessary to run some older games.

Limit resolution Disables any resolution higher than the selected value. By default,
the choice is "unlimited", that means no resolution is disabled.

the Input tab:

Cursor Handling

Hide cursor Forces hiding the hardware cursor.

Show Cursor Forces showing the hardware cursor.

Correct mouse position Compensate for X,Y mouse coordinates when the window is moved or
resized. It should be typically set for most games.

Window frame compensation In some cases, mouse X,Y coordinates appear displaced of the same amout
as the window border (top and left). Checking this flag causes DxWnd to
subtract this value and recover the error.

Force cursor clipping Set hardware cursor clipping within the window's region. It greately
improves the game playability in some cases (namely, the Dungeon Keeper
series)

Keep cursor within window Avoid moving the cursor outside the window area. Doing so was used as
“Cursor OFF” directive in some games.

Keep cursor fixed Inhibits the SetCursorPos() API: in some cases, it affects the
program's behaviour (e.g. “Necrodrome”).

Intercept GDI cursor
clipping

Disables GDI clipping, avoiding unpleasant effects such as the mouse
that is not free to move within the whole window.

Message processing Most programs get X,Y mouse coordinates from the mouse messages or
from the specific API. One tricky way to get the same info, though, is
to listen from the windows message queue using PeekMessag / GetMessage,
and retrieve the X,Y coordinates from ANY received message in the pt
field. Checking this box make DxWnd to fix the X,Y coordinates on this
uncommon situation as well (see “Uprising”).

Fix WM_NCHITTEST

Slow down mouse polling Some old programs have this bad habit to continuously loop through the
mouse status polling with no delay, using 100% of CPU time. This flag
introduces a minimal and unnoticeable delay between mouse polls, saving
most of CPU time.

Release mouse outside
window

Normally, when the mouse is placed outside the window and the window
keeps receiving mouse messages, the mouse cursor is placed on the
corresponding window border and the program performs video scrolling or
so forth. The re are some cases in which you don't want this to happen,
for instance when you want to use two programs alternatively, such as a
game and a keyboard simulator.
Checking this flag causes DxWnd to detect the mouse outside window
condition, and in this case it places the cursor right in the middle of
the screen, where it is supposed to make no harm.

Keyboard Handling

Enables hot keys DxWnd can set some special keys (Alt-Fn) to trigger special actions,
storing the key association in the DxWnd.ini file.
This flag enables the hot keys definitions. If unchecked, all hot keys
are disabled for this program.

Intercept Alt-F4 key Intercepts the Alt-F4 key in the message processing loop to immediately
terminate the program, avoiding any programmed exit procedure (out-tro,
savegame warnings, ads...). Of course, IF the game is doing the message
processing loop!

Message Handling

Filter offending messages In theory, a fullscreen message should not expect several messages that
are impossible to receive, such as border sizing, taskbar events and so
forth. Some programs are not properly coded to react to such
"impossible" messages and may show falfuncions. This flag causes
potentially harmful and meaningless messages to be suppressed.

Peek all messages in queue

DirectInput

DirectInput Hooking Enables hooking on DirectInput methods

Initial coord. Initial coordinates for the DirectInput mouse coordinates

X, Y range Range of X, Y values (min & max) that is permitted for the mouse
coordinates when detected by DirectInput methods.

the Timing tab:

Frame per Second

Frame per Second - Limit Introduces a configurable delay between screen refresh operations, so
that the FPS is limited accordingly

Frame per second – Skip Introduces no delay in the screen operations, but skips several screen
updates so that the actual FPS value is limited without the program
noticing it

Frame per second – delay
(msec)

The delay expressed in milliseconds to be used either for Limit or
Skip operations

Show FPS on title When checked, the FPS counter is appended to the window title

Show FPS overlay When checked, the FPS counter is drawn as an overlay of the program
client area, in a corner of the screen and periodically and randomly
moved to other cornes to avoid accidentally overlap an important
screen region.

Time stretching

Time Stretching – initial: If this option is checked, DxWnd tries to emulate an accelerated (xn)
or decelerated (:n) time flow. The value set in the listbox is the
initial value, that can be altered by means of the time control slider
in the time panel. When checked, DxWnd stretches time in timing API
such as GetSystemTime(), the query performance APIs and the Sleep
APIs, that are the most used ways to control a program timing.

Show time stretch When checked, the time stretch ratio is drawn as an overlay of the
program client area, in a corner of the screen and periodically and
randomly moved to other cornes whenever it is updated.

Fine time adjust When checked, the time stretch ratio coarse becomes finer, from a 1.5
(50%)ratio to a 1.1 (10%) ratio for each tick. This allows a better
and finer control of timing, despite the more limited range (about
0.5x up to 2.0x)

Intercept RTDSC opcode The platform performance counter should be determined by calling the
QueryPerformanceCounter() API. But there is a more direct way, that is
calling the assembler RDTSC family instructions. When checked, DxWnd
looks for RDTSC and RDTSCP intructions by disassembling the program
text segment and replaces them with stretcheable time counters.

Stretch timers When checked, the window timers are stretched, namely the user32.dll
timers set by SetTimer and the multimiedia timers in winmm.dll set by
timeSetEvent()

the Log tab:

Enable Trace This works as a global flag that enables/disables all subsequent
traces.
If unchecked, no output is written.
If checked, error messages, plus the specific messages related to
other flags (see below) are written in the dxwnd.log file in the
program's execution directory.

DxWnd hacks Enables the operation logging of all significant events that DxWnd
performs to bring the fullscreen program in windowed mode.

DirectDraw trace Enables the operation logging of DirectDraw operations

Direct3D trace Enables the operation logging of Direct3D operations

DirectX full trace Enables extended logging of all DirectX operations, no matter whether
they are related to fullscreen / windowed mode or not.

Win Events Enables logging of all Window messages intercepted in the
application's queues, together with events that are generated or
processed internally by the Peek/GetMessage APIs.

Cursor / Mouse Enables extended logging of all cursor or mouse related operations.
** BEWARE ** some old games don't mind the possibility of concurrent
use and perform mouse/cursor operations in close loops, so that this
type of log can quickly grow quite big in size. In this case, consider
the possibility to slow down the program by using the “Slow Down”
flag.

Import Table Enables extended logging of the Import Table as seen by the DxWnd
program.
This can be quite useful to analyse and troubleshoot uncommon
executables (e.g. when copy protections are applied).

Debug Writes some more detailed information for diagnostic purposes.

Registry op. Enables the operation logging of registry operations

Hook op. Enables the operation logging of hooking operations

The DirectX tab:

DirectX Version Hook Sets the basic intervention strategy: depending on the game
technology, a different hooking technique should be adopted. Automatic
tries to find it by itself, but it doesn't always succeed! OpenGL
handling require a dedicated setting (see libs tab)

Emulation Defines the basic surface emulation strategy: either "None" (the
program controls the desktop color depth), "Primary Buffer" (same as
'none', but blit operations are made against a memory surface and then
transferred to the real primary surface – this handles the otherwise
known pich-bug problem) or "Primary Surface" (the virtual primary has
a different color depth of the real primary, and DxWnd takes care of
the color transformation internally: slower but no screen mode
changes!).
The "Automatic mode" uses a very simple strategy for Direct3D games:
it tries the "Primary Surface" mode first and, if that doesn't
succeed, switches to "Locked surface". It is the best strategy I came
across, but it doesn't always work!

Auto primary surface
refresh

Some badly programmed games (namely the "Cossaks" series) don't follow
the specification to blit changes on screen, they just get the primary
surface memory address and keep writing there. The option forces a
periodic blitting of the primary surface on screen even if the game
doesn't request it. You want a second example? It has not been easy to
find, but "Crush! Deluxe" suffers the same problem.

VIDEO → SYSTEM Surface on
fail

When this option is set and a CreateSurface fails because of video
memory shortage, DxWnd backs this up by creating the surface on
memory. Oddly enough, some games expect to notice this by themselves
and work correctly only when the option is NOT set.

Suppress DX common errors Some games running in windowed mode generate sporadic errors that
wouldn't prevent the game to work, but terminate the application. This
option makes directx methods return OK condition in such common cases.

Make Backbuf attachable Alters the size specification of the created backbuffer so that it
copes with the actual primary surface, so that it may be attachable to
a ZBUFFER surface. It makes “Dave Mirra Freestyle BMX” playable.

Blit from Backbuffer Some games (the Sims, the only one so far....) read graphic data from
the primary surface. When the game runs windowed, the approximation
introduced in a scaled window brings cumulative error that appear as a
progressive "smearing" effect. In this case, it might be better to
read the data from the backbuffer surface that is not scaled, even if
in such a way you get other troubles when scrolling (see it by
yourself...). The only reasonable alternative: write game code in a
better way, in my opinion!

Compensate Flip emulation

Suppress clipping DxWnd sets clipping on the primary surface. If the game does it as
way, there might be interferences. As a matter of fact, setting this
flag is the only way to make "Pax Imperia Eminent Domain" working
correctly.

Full RECT blit Causes every blit operation to primary surface to be applied to the
full surface (NULL rect coordinates). It could be handy to recover
wrong surface handling, but this situation should be classifies more
properly as a DxWnd BUG!

Palette update don't blit Avoid executing a plit operation in case of palette update. This could
be used to fix conflicts between GDI and ddraw palette updates

Set AERO compatible mode Quite useful in Windows Vista to Win8 platforms, forces the program to
declare its compatibility with AERO desktop mode, avoiding then the
switch from AERO to standard desktop mode.

Forces HEL Forces Hardware Emulation Layer

Win7 color fix

Don't fix the Pixel Format Do not try to fix the surface pixel format

By default set no
ALPHACHANNEL

Fix ddraw ref counter Decrement the reference counter of some objects to keep in proper
account all service objects created internally by DxWnd

Return 0 ref counter Returns always a 0 reference counter when a surface / directdraw
session is released

Suppress D3D8/9 reset Do not perform the D3D reset operation

the Libs tab:

GDI
No GDI handling Disables video-related GDI / user32 API hooking

Scaled GDI calls Scales GDI API coordinates to fit the window stretching

Emulated Device Context Handle an emulated GDI DC

Map DC to Primary Surface Use the ddraw primary surface DC for GDI operations

Scale font parameters Tries to scale font parameters to fit the window stretching

Glide (3DFX)
Hook Glide libs Enables Glide API hooking

OpenGL
Hook OpenGL Enables OpenGL API hooking

Force Hook Experimental – probably unnecessary

Custom OpenGL library By default, DxWnd detects OpenGL APIs within the standard OpenGL32.dll
library. The field allow to set a different filename for any custom
OpenGL implementation that may refer to a different library name.

the Comaptibility tab:

Fake Version Causes the program to detect the chosen Windows release. Notice: this
is not the same thing as the compatibility setting of the Windows
properties panel, that also adjust the system's behaviour to emulate
the chosen platform.

Tweaks

Suppress d3d9 extensions D3d9.dll comes in different versions depending on the platform: on
older windows releases it exports the Direct3DCreate API, while in
more recent versions there are many further exported calls. The flag
suppresses the additional entries.

Textures not power of 2 fix

Clean ZBUFFER @0.0 fix

Clean ZBUFFER @1.0 fix

Bypass font unsupported api

Set single core process
affinity

Suppress d3d9 extensions

Suppress IME The flag tries to suppress IME windows, though that is not fully
working yet!

Handle exceptions Setting this flag causes DxWnd to set its own exception handler that
tries (and often succeds!) to fix sevral common exceptions such as the
divide by zero exception of old games that were trying to calculate
the CPU speed.

Limit available resources Makes the query for available resources (either RAM, hard disk free
space and so on) to return a limited value: some old games can't
handle a very big integer number and see it as a negative value,
refusing to start.

Registry

Emulate registry Intercepts registry read operations so that missing entries are
replaced by the values in DxWnd.reg file

Override registry Intercepts registry read operations so that missing and exixting
entries are replaced by the values in DxWnd.reg file

I/O Tweaks

Fix buffered I/O after Win8

Set CDROM Drive Type

Hide empty CDROM drives

3D Effects

Disable Textures Remap all textures with a white texture (D3D only).

3D wireframe As a fancy and easy action that DxWnd may implement on D3D and OpenGL
programs (not ddraw ones!!), checking this flag will show the graphic
in wireframe mode.

Disable Fogging Disables the fogging effect (D3D only).

DxWnd Status
The DxWnd status shows the following information, refreshing them
periodically each one second:

DxWnd version: in the picture, the current one: 2.01.78

Hook status: either IDLE, READY or RUNNING (see tray icons)

when running:

Running: the task name (see the configuration panel)

Screen = (width x height) colordepth, as seen by the task

FullScreen = Yes/No depending whether the task has set the cooperative level to
EXCLUSIVE or not

DX Version = version of the DirectDraw / Direcr3D interface currently in use
(namely, the one used to create the primary surface).

Logging = the logging flag (either ON or OFF)

Cursor = the X,Y cursor coordinates as intercepted and fixed by DxWnd

FPS = frame per second value calulated by DxWnd

Time Slider
The Time Slider shows the current time stretching value,
refreshing it periodically each one second. It also allow the user
to alter the time stretching factor by grabbing the slider (click
on the slider with the left button and keep it pressed) and moving
it to left or to right:

The time stretching factors shown below the slider are related to
the coarse (default) time resolution. If the fine time adjustment
flag is set, the leftmost slider position corresponds approx. To
x2 and the rightmost to approx. :2

DxWnd Palette
The DxWnd Palette shows the 256 colors in the current emulated
palette, refreshing them periodically each one second:

dxwnd.ini configuration file
The dxwnd.ini configuration file holds the DxWnd almost complete
configuration (some registry tricks need the dxwnd.reg file with
registry tweaks...), but needs no manual editing since almost all
the information in there comes form the DxWnd GUI.

There are a few exceptions that need to be known so that just in
case you can manually edit them.

[window] section:

lang=<specification> Sets the DxWnd GUI language. Currently supported
languages are only
EN – english (default language)
CN – chinese
IT – italian

When you set a lang=<XX> specification DxWnd looks for
and loads the resources in the Resources_<XX>.dll file,
so anyone could build and use his own language pack.

lang=default disables resource loading and the program
uses the default and built-in english pack.

lang=automatic makes DxWnd search for the current UI
language and try to map it to the available language
packs. If no corresponding pack is available, it
switches to the default (english) behaviour.

This setting is always overridden by a /lang=<XX>
argument line specification.

posx=<x0>

posy=<y0>

sizx=<sizX>

sizy=<sizY>

The DxWnd window position and size. Whenever you move /
stretch the GUI, the new coordinates are stored here.

[keymapping] section:

timetoggle=0xnn

altf4=0xnn

timeslow=0xnn

timefast=0xnn

...

Sets the DxWnd hot keys mapping (see next paragraph).
The available values represent the hex key code and
range from 0x70 (Alt-F1) to 0x7C (Alt-F12).
These are the available hot keys:

timetoggle: toggle time stretching on & off

altf4: terminate the program, such as typing Alt-F4

timeslow: decrease time speed

timefast: increase time speed

cliptoggle: toggle cursor clipping on & off

refresh: do a screen refresh

logtoggle: toggle logging on & off

fpstoggle: toggle FPS show on & off

plocktoggle: toggle position lock on & off

Special keys
DxWnd injects in the controlled application some special keys that
might be useful:

cliptoggle When the “Force cursor clipping” option is ON, this key
toggles the clipping region ON and OFF so that you can exit
the game area and control other tasks or move/resize your
game window.

refresh Forces a surface repaint. Some old games didn't even
consider the possibility of a task overriding the game area,
so they don't repaint when they should. I know this sounds a
little “technicality”, but if your game screen gets dirty,
try this key to fix it.

logtoggle Toggles logging ON/OFF. Since painting operations can be
quite verbose, toggling the log can be a useful trick to get
information about a specific program's activity without
having to browse tons of log lines.

plocktoggle Toggle position locking: when the Windows – Lock win
Coordinates flag is set, the window can't be moved or
resized, unless you toggle this behaviour OFF, do the change
and lock the position again to ON.

fpstoggle Toggle the FPS display ON and OFF.

timefast/timeslow Increase / decrease the timeshift multiply factor when the
time stretching option is set.

altf4 This key is the well known quit command for any task. If the
application doesn't react quickly enough to your command,
you could set the “Intercept Alt-F4 key” option to cause
DxWnd to immediately quit the program.

timetoggle When time stretching is enabled, this key toggles the time
stretching feature entirely OFF and ON. It's useful to play
part of the program at a normal speed.

